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1 Introduction

Non-relativistic AdS/CFT correspondence has recently been studied in several papers in-

cluding [1] - [37]. Actually non-relativistic CFTs may be obtained from relativistic CFTs

by making use of a non-relativistic limit. In general by taking a non-relativistic limit it

means that we are sending the speed of light to infinity. More precisely we have v/c → 0

where v is the typical speed of the model. We note, however, that there are several ways

to take this limit which may even reduce the dimensions of the spacetime too.

To explore the procedures of taking the non-relativistic limit we will start from a

relativistic CFT in d + 1 dimensions parametrized by t, xi for i = 1, . . . , d. To proceed

let us decompose the coordinates as (x+, x−, xi), i = 1, . . . , d − 1, where the light like

coordinates (x+, x−) are defined by

x+ =
1√
2
(t + xd), x− =

1√
2
(t − xd). (1.1)

Next we compactify the light like coordinate x− and identify the momentum along the

light like coordinate with the number operator of the non-relativistic CFT. Then we look

for those generators of the relativistic conformal algebra that commute with the number

operator which altogether construct an algebra. The resultant algebra is the Schrödinger

algebra [38, 39] which is the symmetry of the Schrödinger equation. In other words the

Schrödinger group may be thought of as a subgroup of SO(2, d + 1) with fixed momentum

along the null direction (see for example [40–45]). A theory with this symmetry is a non-

relativistic CFT with the following scaling symmetry

x+ → λ2x+, xi → λxi. (1.2)
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Note that starting from d + 1 dimensional relativistic CFT the obtained theory is a non-

relativistic CFT in d dimensions. This symmetry, for example, is relevant to study cold

atoms [1]. The generators of the corresponding algebra are spatial translations Pi, rota-

tions Mij, time translation H, Galilean boosts Bi, dilation D, number operator N and

special conformal transformation K. The algebra has also a central extension given by the

number operator.

Recently gravity duals of non-relativistic CFTs have been proposed in [1, 2]. It has

also been shown [46] that the asymptotic symmetry algebra of the corresponding geometry,

in any dimension, is an infinite dimensional algebra containing one copy Virasoro algebra

compatible with the symmetry of non-relativistic CFT [47].

On the other hand one may look for a non-relativistic conformal algebra which scales

space and time in the same way

t → λt, xi → λxi (1.3)

This algebra has recently been studied in [33](see also [48]) where it was shown that the

corresponding algebra may be obtained from d+1 dimensional relativistic conformal algebra

by making use of a contraction. Since the contraction does not change the dimension of

the algebra the resultant algebra can be thought of as the symmetry of a non-relativistic

CFT in d + 1 dimensions. More precisely the contraction can be defined by the scaling

t → t, xi → ǫxi in the limit of ǫ → 0. The generators of the obtained algebra are spatial

translations, Pi, rotations Jij , time translation H, Galilean boosts Bi, dilation D, special

conformal transformation K and spatial special conformal transformation Ki.

It is also shown [33] that the corresponding algebra admits an infinite dimensional

extension containing one copy of Virasoro algebra and the bulk gravity dual is provided

by a Newtonian gravity given in terms of a non-dynamical metric but a dynamical torsion

free affine connections. The gravity background may also be thought of as spatial d − 1

dimensional space fibered over an AdS2. In this sense the infinite dimensional extension

may be understood from the asymptotic isometries of this AdS2.

The aim of this article is to extend the above considerations for a new contraction in

which we scale d− n − 1 directions by ǫ and n + 1 directions remain unchanged. Then we

consider the limit of ǫ → 0. The obtained algebra which we call it semi-Galilean algebra

can be thought of as a symmetry of non-relativistic CFT in d + 1 dimensions.1

We show that for n = 1 the corresponding algebra admits an infinite dimensional exten-

sion containing two copies of Virasoro algebra. The corresponding gravity dual is defined

on a geometry which is a d−2 dimensional spatial space fibered over an AdS3 and, indeed,

the infinite dimensional extension can be associated to the asymptotic isometries of AdS3.

For n ≥ 2 the contraction leads to an algebra which has so(2, n + 1) × so(d − n −
1) subalgebra and the corresponding gravity dual is defined by a geometry which is a

d − n − 1 dimensional spatial space fibered over an AdSn+2. The subalgebra can, then,

be identified with the isometries of AdSn+2. Since the asymptotic symmetry algebra of

1We note, however, that calling this theory a non-relativistic CFT is somehow misleading as it has

relativistic properties in those directions which remained unchanged
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AdSn+2 space for n ≥ 2 is finite dimensional, the corresponding semi-Galilean algebra is

also finite dimensional.

The paper is organized as follows. In the next section we study the Galilean algebra

for arbitrary n. In section three we explore how the AdS/CFT correspondence works in

this context. The last section is devoted to discussions.

2 General contraction of conformal algebra

In this section we study non-relativistic limit of relativistic conformal algebra in d+1 dimen-

sions by making use of a contraction. To proceed we consider the following general scaling

t → t, yα → yα, xi → ǫxi, (2.1)

where α = 1, . . . , n and i = n + 1, . . . d. The contraction is defined by the above scaling in

the limit of ǫ → 0. For n = 0 this has been studied in [33] where it was shown that the

resultant contracted algebra admits an infinite dimensional extension containing one copy

of Virasoro algebra. In what follows we would like to extend this consideration for general n.

2.1 Field theory description

We start from a CFT in d + 1 dimensions. The theory is invariant under the action of

generators of conformal algebra given by rotations Jµν , translations Pµ, dilation D and

special conformal transformations Kµ whose representations as a vector field acting on the

d + 1 dimensional Minkowski space are given by

Jµν = −(xµ∂ν −xν∂µ), Pµ = ∂µ, D = −(x ·∂), Kµ = −(2xµ(x ·∂)− (x ·x)∂µ) (2.2)

with µ = 0, . . . , d. The aim is to contract the conformal algebra generated by the above

generators. To do this we will consider the general scaling (2.1) in the limit of ǫ → 0. To

be specific we will consider the case of n = 1. It is, of course, straightforward to generalize

it for arbitrary n.

For n = 0 under the above rescaling and in the of ǫ → 0 the d+1 dimensional conformal

algebra reduces to Galilean conformal algebra studied in [33]. For n = 1 the generators of

the corresponding algebra as a vector field acting on a d + 1 dimensional Minkowski space

( for d ≥ 2) are given by

Jij = −(xi∂j−xj∂i), Ji = t∂i, J̃i = −y∂i, Pi = ∂i, Ki = (y2−t2)∂i,

D = −(xi∂i + y∂y + t∂t), D̃ = t∂y + y∂t, P = ∂t, P̃ = ∂y,

K = (t2 + y2)∂t + 2ty∂y + 2txi∂i, K̃ = −(t2 + y2)∂y − 2ty∂t − 2yxi∂i.

(2.3)

To have an insight how the semi-Galilean conformal algebra for n = 1 could be, it is useful

to define new coordinates u = t+y, v = t−y by which the above generators may be recast

to the following form2

H = 2∂u, E = 2

(

u∂u +
1

2
xi∂i

)

, C = 2(u2∂u + uxi∂i),

2For example H = P̃ + P, C = K − K̃ and E = D̃ − D.
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H̄ = 2∂v, Ē = −2

(

v∂v +
1

2
xi∂i

)

, C̄ = 2(v2∂v + vxi∂i),

Jij = −(xi∂j − xj∂i), Pi = ∂i, Bi = −u∂i, B̄i = v∂i, Ki = −uv∂i. (2.4)

It is easy to see that (H,E,C) and (H̄, Ē, C̄) generate two copies of SL(2, R) algebra. In

fact to write the explicit form of the commutation relations of the algebra it is useful to

define L±1,0, L̄±1,0 and Mi rs r, s = 0, 1 as follows

{

L−1 =
1

2
H, L0 =

1

2
E, L1 =

1

2
C}, {L̄−1 =

1

2
H̄, L̄0 = −1

2
Ē, L̄1 =

1

2
C̄

}

,

{Mi 00 = −Pi, Mi 01 = Bi, Mi 10 = −B̄i, Mi 11 = Ki}. (2.5)

Using this notation the non-zero commutation relations of the algebra are

[Ln, Lm] = (n − m)Ln+m, [L̄n, L̄m] = (n − m)L̄n+m,

[Ln,Mi rs] =

(

n + 1

2
− r

)

Mi (n+r)s, [L̄n,Mi rs] =

(

n + 1

2
− s

)

Mi s(n+s),

[Ml rs, Jij ] = (δjlMi rs − δilMj rs) , [Jij , Ji′j′] = so(d − 1), (2.6)

which make the two SL(2, R) subalgebras manifest. Here n,m = ±1, 0 and r, s = 0, 1. Ac-

tually it is useful to re-express the generators of (2.5) in the following instructive closed form

Ln = un+1∂u +
n + 1

2
unxi∂i, L̄n = vn+1∂v +

n + 1

2
vnxi∂i, Mi rs = −urvs∂i. (2.7)

From these expressions it is natural to define the above vector fields for arbitrary integers

n and r. Indeed defining

Jij nm = −unvm(xi∂j − xj∂i), (2.8)

one finds an infinite dimensional algebra as follows

[Ln, Lm] = (n − m)Ln+m, [L̄n, L̄m] = (n − m)L̄n+m,

[Mi nm,Mj n′m′ ] = 0, [Ln, L̄m] = 0,

[Ln,Mi ml] =

(

n + 1

2
− m

)

Mi (n+m)l, [L̄n,Mi ml] =

(

n + 1

2
− l

)

Mi m(n+l)

[Ln, Jij ml] = −mJij (n+m)l, [L̄n, Jij ml] = −lJij m(n+l)

[Ml nm, Jij n′m′ ] =
(

δjlMi (n+n′)(m+m′)−δilMj (n+n′)(m+m′)

)

. (2.9)

Moreover the Jij nm’s generate an so(d − 1) affine algebra.

As an conclusion we observed that the (semi) Galilean conformal algebra obtained from

the relativistic conformal algebra using the contraction (2.1) admits an infinite dimensional

extension for n = 0, 1. This may be understood from the fact that in these cases there is

at least an SL(2, R) subalgebra which may be extended to a Virasoro algebra. As we will

see from gravity point of view this corresponds to the fact that in these cases the gravity

dual develops AdS2 or AdS3 geometries for n = 0 and n = 1, respectively.

– 4 –
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Actually the above procedure may be generalized for n ≥ 2 where we will get an algebra

containing an so(2, n + 1) × so(d − n − 1) subalgebra. We note, however, that in this case

the resultant semi-Galilean algebra does not admit an infinite dimensional extension. As

we will see in the next section the reason may be understood from the fact that in this

case the gravity background develops an AdSn+2 geometry which has finite dimensional

asymptotic symmetry algebra.

2.2 Gravity description

Following AdS/CFT correspondence we would expect that a d + 1 dimensional CFT may

have a gravity dual defined on a background containing an AdSd+2 factor where the CFT

lives on the boundary of the AdS space. Therefore one should be able to take the non-

relativistic limit from both side of the duality. In particular we would like to carry out the

contraction of the previous section on the AdS part of the bulk geometry.

To proceed consider the metric of an AdSd+2 space in the Poincaré coordinates

ds2 =
−dt2 + dy2

α + dx2
i + dz2

z2
. (2.10)

The non-relativistic limit of the previous section can be generalized to the bulk geometry

as follows

t → t, z → z, yα → yα, xi → ǫxi. (2.11)

In the limit of ǫ → 0 where only t, z and yα survive the contraction the resultant geometry

develops an AdSn+2 space. The rest d−n dimensional space parametrized by xi are fibered

over the AdSn+2 base spacetime. Indeed as it was argued in [33] the corresponding gravity

dual should be given in terms of the Newton-Cartan like description where AdSn+2 plays

the special role of the time. In this formalism the metric is non-dynamical and the dynamics

are given by torsion free affine connections. More precisely following [33] one may define a

contravariant tensor γ = γMN∂M⊗∂N with M,N = {t, z, α, i}. It has n+2 zero eigenvalues

corresponding to {t, z, yα} which parametrize the base AdSn+2 space with the metric

ds2 = gabdxadxb =
−dt2 + dy2

α + dz2

z2
. (2.12)

The affine connections ΓM
NL are compatible with both base AdS space as well as the d − n

dimensional spatial fiber

∇MγML = 0, ∇Mgab = 0. (2.13)

In our case the dynamical connection may be given by Γi
ab = ∂iΦab [33].

Following the general lore of the AdS/CFT correspondence [49] we would expect that

if the above Newtonian gravity provides a gravity dual of the semi-Galilean conformal filed

theory one should be able to see the semi-Galilean symmetry algebra as the asymptotic

symmetry algebra of the above geometry in the sense of Brown and Henneaux construc-

tion [50]. In what follows we will show that this is, indeed, the case. To be specific we will

consider the case of n = 1 which turns out to be more interesting case. Generalization to

other cases is straightforward.

– 5 –
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In the Poincaré coordinates the Killing vectors of AdSd+2 are given by

Jµν = −(xµ∂ν − xν∂µ), D = −(xµ∂µ + z∂z),

Kµ = −(2xµ(xν∂ν + z∂z) − (xνxν + z2)∂µ), Pµ = ∂µ. (2.14)

Using the scaling (2.11) the resultant contracted Killing vectors read

Pi = ∂i, Bi = t∂i, B̃i = −y∂i, Ki = (t2 − y2 − z2)∂i,

D = −(t∂t + y∂y + xi∂i + z∂z), D̃ = t∂y + y∂t, Jij = −(xi∂j − xj∂i),

K = −(t2 + y2 + z2)∂t − 2zt∂z − 2ty∂y − 2txi∂i, P = ∂t,

K̃ = (t2 + y2 − z2)∂y + 2ty∂t + 2zy∂z + 2yxi∂i, P̃ = ∂y. (2.15)

Note that to make the comparison more transparent we have used the same labeling for bulk

and boundary generators. Following our previous discussions setting u = t + y, v = t − y

the above Killing vectors may be recast to the following form

H = 2∂u, E =2

(

u∂u+
1

2
xi∂i+

1

2
z∂z

)

, C = 2(u2∂u+u(xi∂i+z∂z)+z2∂v),

H̄ = 2∂v, Ē =−2

(

v∂v+
1

2
xi∂i+

1

2
z∂z

)

, C̄ = −2(v2∂v+v(xi∂i+z∂z)+z2∂u),

Jij =−(xi∂j−xj∂i), Pi = ∂i, Bi = u∂i, B̄i = v∂i, Ki = (uv − z2)∂i.

(2.16)

which reduce to those in the previous section in the limit of z → 0 where we approach the

boundary of the AdS3.

Let us define infinite dimensional vector fields in the bulk as follows

Ln = un+1∂u +
n + 1

2
un(xi∂i + z∂z) +

n(n + 1)

2
un−1z2∂v,

L̄n = vn+1∂v +
n + 1

2
vn(xi∂i + z∂z) +

n(n + 1)

2
vn−1z2∂u, (2.17)

which can be properly identified with H,E,C and H̄, Ē, C̄ for n = ±1, 0 which at the

boundary where z → 0 reduce to those in (2.7). It is interesting to note that these vector

fields asymptotically obey two copies of Virasoro algebra, i.e.

[Ln, Lm] = (n − m)Ln+m, [L̄n, L̄m] = (n − m)L̄n+m, [L̄n, Lm] = O(z4). (2.18)

The action of the Virasoro generators on the metric of the base manifold, AdS3, is given

Ln : ds2 → ds2 +
n(n2 − 1)

2
un−2du2, L̄n : ds2 → ds2 +

n(n2 − 1)

2
vn−2dv2. (2.19)

Therefore the generators of two SL(2, R)’s given by L±,0 and L̄±,0 are the exact isometries

of the base metric, as expected, while for other n’s they generate the asymptotic symmetry

which preserve the following boundary conditions






huu = O(1) huv = O(1) huz = O(z)

hvu = huv hvv = O(1) hvz = O(z)

hzu = huz hzv = hvz hzz = O(1)






. (2.20)

– 6 –



J
H
E
P
0
8
(
2
0
0
9
)
0
2
2

On the other hand requiring to have asymptotically a closed algebra we will have to extend

the other generators as follows

Mi nm = −(unvm − nmun−1vm−1z2)∂i, Jij nm = −unvm(xi∂j − xj∂i), (2.21)

which for m,n = 0, 1 can be identified with Pi, Bi, B̄i,Ki and at the boundary where z → 0

reduce to that in (2.7). It is easy to see that

[Ln,Mi lm] =

(

n + 1

2
− l

)

Mi (n+l)m + O(z4), [Ln, Jij lm] = −lJij (n+l)m + O(z2),

[L̄n,Mi lm] =

(

n + 1

2
− m

)

Mi l(n+m) + O(z4), [L̄n, Jij lm] = −mJij l(n+m) + O(z2),

[Ml nm, Jij n′m′ ] =

(

δjlMi (n+n′)(m+m′) − δilMj (n+n′)(m+m′)

)

+ O(z2),

[Mi nm,Mj n′m′ ] = 0. (2.22)

As a conclusion we have demonstrated that the asymptotic symmetry algebra of our bulk

geometry is the semi-Galilean conformal algebra studied in the previous section.

It is straightforward to generalize the above considerations for n ≥ 2 where the base

space will be AdSn+2. In this case from the base space we find an so(2, n + 1) factor while

from the fiber one gets an so(d− n− 1) subalgebra which is compatible with those studies

in the previous section. We note that for the case of n ≥ 2 the semi-Galilean conformal

algebra is finite dimensional due to the fact the the asymptotic symmetry of AdSn+2 for

n ≥ 2 is finite dimensional.

3 AdS/CFT description of theory with Galilean conformal symmetry

In this section we would like to study the AdS/CFT correspondence for the Galilean con-

formal field theory. Following the relativistic CFT one would expect that in the Galilean

CFT the asymptotic states cannot be defined and the physical observables would be cor-

relation functions. Therefore the task is to compute N -point functions of operators in the

Galilean CFT which is the aim of this section.

In what follows we will mainly consider the case of n = 0, though the procedure may

be generalized for other n’s.

3.1 Field theory description

Consider a Galilean CFT in d + 1 dimensions. As we have seen the corresponding algebra

can be obtained from the relativistic CFT by a contraction. Therefore one may naively

expect that the N -point functions of Galilean CFT can also be obtained from those in

the relativistic CFT by making use of the same contraction. For example consider two

point function of an operator φ with scaling dimension ∆ in a relativistic CFT in d + 1

dimensions parametrized by t and xi

〈φ(t1, xi)φ(t2, yi)〉 ∼
1

(−(t1 − t2)2 + (xi − yi)2)∆
. (3.1)

– 7 –
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Using the scaling limit (2.1) and in the limit of ǫ → 0 the two point function of the Galilean

CFT reads

〈φ(t1, xi)φ(t2, yi)〉 ∼
1

(t1 − t2)2∆
. (3.2)

Similarly we can extend the above procedure to N -point function to conclude that in

general the N -point function of Galilean CFT depends only on time.

We, note, however that although the above results seem reasonable, the way we reach

the conclusion may not be correct in general. The reason is due to the fact that the repre-

sentations of an algebra under a contraction do not necessarily lead to faithful (bijective)

representations [51]. In other words although the N -point functions we obtain by this

method satisfy the Ward identity of the Galilean CFT, it is not clear that the general

form of the N -point functions can be obtained from this method. Therefore it would be

interesting to evaluate the N -point function of Galilean CFT directly. To do this we utilize

the Ward identity of the Galilean CFT.

The representation of the generators of the Galilean conformal algebra acting on an

operator with dimension ∆ is given

Jij = −(xi pj − xj pi), P0 = H = −∂t, Pi = ∂i Bi = t∂i,

D = −(xi∂i + t∂t) − ∆, K = −(2txi∂i + t2∂t) − 2∆t, Ki = t2∂i. (3.3)

Note that although the Galilean conformal algebra admits an infinite dimensional extension,

we would expect that the vacuum is only invariant under the global part of the algebra

given by the above generators. Therefore the Ward identity of the Galilean CFT may be

written as follows
∑

i

〈0|φ(x1) . . . Qφ(xi) . . . φ(xN )|0〉 = 0 (3.4)

where |0〉 is a vacuum which is invariant under the global part of the algebra. Qφ(xi) is the

representation of an operator Q on the field φ(xi) with Q stands for one of the generators

in (3.3). By making use of the equation (3.4) one can write the Ward identities for N -

point function GN (x1, t1, . . . , xN , tN ). To write the explicit form of the Ward identities

for N -point functions it is useful to define new variables ti2 = ti − t2, xi2 = xi − x2 and

t̃12 = t1 + t2, x̃12 = x1 + x2 for i = 1, 3, 4 · · · , N .

From the Ward identities for space and time translations one finds that GN depends

only on ti2 and xi2, i.e. GN (t12, t32, . . . ;x12, x32, . . .). On the other hand from Ki one finds

[t12D12 + t32D32 + · · · + tN2DN2]GN = 0,

[t32(t32 − t12)D32 + · · · + tN2(tN2 − t12)DN2]GN = 0, (3.5)

where Di2 = ∂
∂xi2

. From the dilatation we get

[x12D12 + · · · + xN2DN2 + t12∂12 + · · · + tN2∂N2 + λ1 + · · · + λN ]GN = 0, (3.6)

and K leads to the following differential equation

[(2t32x32 − t32x12 − t12x32)D32 + · · · + (2tN2xN2 − tN2x12 − t12xN2)DN2+

– 8 –
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+t32(t32 − t12)∂32 + · · · + tN2(tN2 − t12)∂N2 + t12(λ1 − λ2 − · · · − λN )+

+2λ3t32 + · · · + 2λN tN ]GN = 0. (3.7)

Now the task is to solve these equations to find N -point functions. We note, however,

that these equations cannot fix the N -point functions completely for arbitrary N . This is

of course the case even for relativistic one where the N -point functions can be found up to

unknown functions. Let us give the explicit form of two and there point functions.

Two-point function

From (3.5) it is clear that the two-point function does not depend on x12 and from (3.6)

we get

G2 := 〈φ1(t1, xi1)φ2(t2, xi2)〉 = C t−∆
12 , ∆ = ∆1 + ∆2 (3.8)

where C is a constant.

Three-point function

From (3.5) it is clear that the three-point function does not depend on x12 and x32 and

from (3.6) and (3.7) one finds

G3 :=〈φ1(t1, xi1)φ2(t2, xi2)φ3(t3, xi3)〉=C

(

1

t12

)∆1+∆2−∆3
(

1

t32

)−∆1+∆2+∆3
(

1

t13

)∆1+∆3−∆2

(3.9)

N-point function

In principle one could proceed to compute N -point function for arbitrary N , though here

we will not do that. The only comment we would like to make is that utilizing the Ward

identities one can show that the N -point function depends only on ti2’s.

3.2 Gravity description

In this subsection we would like to see how the N -point functions we have considered in the

previous section can be obtained from gravity description. The procedure in the relativistic

AdS/CFT correspondence is to evaluate the bulk action on a classical solution with a given

boundary condition. Since for Galilean CFT the gravity description is given in terms of

the Newtonian gravity the above description may not be directly applied in this case. To

explore the procedure we start from a propagating field on an AdS geometry and impose

the contraction we have introduced in the previous section.

To proceed, for simplicity, we consider a massive scalar field on the AdSd+2 background

whose equation of motion is given by

1√
G

∂M

(√
GGMN∂Nφ(t, z, xi)

)

− m2φ(t, z, xi) = 0, (3.10)

where GMN is the metric of the AdS geometry. To be specific we consider the AdS geometry

in the Poincaré coordinates parametrized by t, z, xi. Under the scaling (2.11) one has

GMM → GMN , ∂t → ∂t, ∂z → ∂z, ∂i → ǫ−1∂i. (3.11)
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so that
[

1√
G

∂a

(√
Ggab∂bφ(t, z, xi)

)

− m2φ(t, z, xi)

]

+
z2

ǫ2
∂2

i φ(t, z, xi) = 0. (3.12)

Here gab is the metric of AdS2 base geometry. In order to have a well behaved equation in

the limit of ǫ → 0 one should impose

1√
G

∂a

(√
Ggab∂bφ(t, z, xi)

)

− m2φ(t, z, xi) = 0, ∂2
i φ(t, z, xi) = 0. (3.13)

The first equation may be obtained from a two dimensional action given by

I =

∫

dtdz
√

G
1

2

(

gab∂aφ∂bφ + m2φ2

)

, (3.14)

while the second equation may be treated as a constraint. Therefore the most general

solution of the equation of motion of the above action is

φ(t, z) = z
d+1

2 e−iωt(AIα(ωz) + BKα(ωz)), (3.15)

where α =

√

(d+1)2

4 + m2. Since in the present case the constraint decouples from the

equation of motion, it leads to an overall factor which could depends on xi.
3 It is then

straightforward to follow the general role of the AdS/CFT correspondence to find the bulk

solution by given a boundary value as follows

φ(t, z) = cδ∆−d−1

∫

dt′φδ(t
′)

(

z

z2 + |t − t′|2
)∆

, (3.16)

where ∆ = d
2 + α and φδ denotes the Dirichlet boundary value at z = δ. This can be used

to read the two point function as follows

〈O(t1)O(t2)〉 ∼
1

(t1 − t2)2∆
. (3.17)

in agreement with (3.8) for ∆1 = ∆2 = ∆.

To find N -point function we should add an interaction term λNφN to the action. Then

following the standard AdS/CFT procedure one arrives at (see for example [52])

IN (t1, . . . , tN ) ∼
∫

dtdz
z−(d+2)+N∆

[(z2 + (t − t1)2) . . . (z2 + (t − tN )2)]∆
. (3.18)

In particular for N = 3 we get

〈O(t1)O(t2)O(t3)〉 ∼ −λ3Γ
(

1
2∆ + α

)

2πd+1

[

Γ
(

1
2∆

)

Γ(α)

]3
1

(t12t31t23)
∆

. (3.19)

3We note, however, that the over all factor could parametrically be divergent due to the integration

over boundary term. This might be observed by redefinition of the boundary operators by making use of a

regularization. The similar behavior happens in the non-relativistic CFT studied in [2, 32].
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in agreement with (3.9) for ∆1 = ∆2 = ∆3 = ∆.

As a conclusion we have demonstrated how N -point function can be obtained from

gravity description of Galilean CFT where we have seen that the main role plays by the

base AdS2 geometry.

Actually the procedure may be summarized as follow. In order to obtain the physical

correlation functions one needs to use the standard AdS/CFT correspondence for AdS2

part, though the action of the corresponding propagating fields in the AdS2 geometry gets

a contribution from the fiber via the measure of the integral. Otherwise the procedure

follows the same as that in the standard AdS/CFT correspondence applied for AdS2.

The above procedure may be generalized to arbitrary n. The only difference is that

the AdS2 has to be replaced by AdSn+2. In other words in this case the action is given by

I =

∫

dtdzdnyα zd−n−1√g
1

2
(gab∂aφ∂bφ + m2φ2) (3.20)

where gab is the metric of AdSn+2 given by (2.12). Note that the propagating fields are

subject to the constraint ∂2
i φ = 0 for i = 1, . . . , d − n − 1.

It is important to note that the decoupling of the fiber is due to the particular form

of the constraint. If we change the constraint (for example by breaking the conformal

symmetry via heating up the theory) the situation may be changed.

4 Discussions

In this paper we have considered different contractions of a d + 1 dimensional relativistic

conformal algebra. The contraction is defined by the scaling (2.1) in the limit of ǫ → 0. In

other words if we define the velocity of l th direction as

vα =
yα

t
, vi =

xi

t
, α = 1, . . . , n, i = n + 1, . . . , d, (4.1)

in this limit one has vi → 0. Therefore the contraction may be thought of as taking

non-relativistic limit of the relativistic conformal algebra. In particular when n = 0 the

resultant algebra is the Galilean conformal algebra [33]. For n ≥ 1 we are taking non-

relativistic limit in some directions while the others remain unchanged. So, it may be

treated as a semi-Galilean conformal algebra.

In general by a contraction the conformal algebra in d+1 dimension, so(2, d+1), reduces

to an algebra which contains an so(2, n+1)×so(d−n−1) subalgebra. For n = 0 and n = 1

the obtained algebras have SL(2, R) and SL(2, R)×SL(2, R) subalgebra, respectively. Due

to this property the corresponding algebras have infinite dimensional extension where the

SL(2, R)’s extend to the Virasoro algebra. Having had the Virasoro algebra in the cases

of n = 0, 1, it would be interesting to see if the (semi) Galilean conformal algebra allows a

central extension to its Virasoro subalgebra.

Following the AdS/CFT correspondence one may suspect that the (semi) Galilean

CFTs may have dual gravity descriptions. If so, the corresponding gravity dual should

contain a factor of AdSn+2 to support the symmetry group SO(2, n+1). Moreover to have

the symmetry group SO(d − n − 1) the gravity dual should also have a factor of d− n − 1

– 11 –
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dimensional flat space, Md−n−1. On the other hand since the semi-Galilean conformal

algebra cannot be factorized as so(2, n+1)×so(d−n−1) the bulk geometry is not a direct

product of these two spaces, though locally it may be thought of as AdSn+2 ×Md−n−1. In

fact it was argued in [33] that at least for n = 0 the geometry is a d−1 dimensional spatial

space fibered over an AdS2. From our consideration we expect that in general the bulk

geometry is a d− n− 1 dimensional spatial space fibered over an AdSn+2. Note, that, the

corresponding gravity is given in terms of Newton-Cartan like description when the role of

time is replaced by an AdSn+2.

Using this picture it is easy to understand why the cases of n = 0 and 1 have infinite

dimensional extension while the other cases are finite dimensional. In fact the reason is

due to the asymptotic symmetry of AdS space; while for AdS2 and AdS3 it is infinite

dimensional, for the others it is finite dimensional.4

We have also explored the AdS/CFT correspondence for (semi) Galilean CFTs where

we have seen that the essential role is played by the base AdSn+2 geometry. In fact

the correlation functions of the (semi) Galilean CFTs can be evaluated by making use of

propagating fields on AdSn+2 with proper boundary conditions and a modified measure

due to the contribution of the fiber.

It is worth noting that we have only considered a particular subsector of the theory. In

fact since the dilation and Galilean boost commute, [D,Bi] = 0, in general any operators of

the theory are labeled by two numbers; conformal dimension ∆ and boost number, bi which

are eigenvalues of dilation and boost, respectively. It is easy to see that bi = 0 is a consistent

choice leading to a subsector whose correlation functions of the corresponding operators

depend only on the time. On the other hand for operators with bi 6= 0 the correspond-

ing correction functions depend on the spatial coordinates (fiber coordinates) as well (see

also [53]). Since our main motivation was to explore the role of the AdS base space in the

context of AdS/CFT correspondence for Galilean CFT’s we only considered the bi = 0 case.

An interesting application of this contraction would be to apply the procedure to

N = 4 four dimensional SYM theory whose gravity dual is given by type IIB string theory

on AdS5 ×S5. Taking the limit from both sides of the duality one may single out a subset

of N = 4 four dimensional SYM theory which has (semi) Galilean conformal symmetry.

This might give a new insight about the AdS/CFT correspondence following [54].

In the context of AdS/CFT duality it is known that heating up the dual field theory

generically corresponds to adding a black hole in the bulk gravity. Therefore we would

expect that applying the above limit one may find a gravity dual to the (semi) Galilean

CFT at finite temperature. In this case the bulk gravity background may be interpreted

as a d− n − 1 dimensional spatial space fibered over a base which is given by a black hole

in AdSn+2 space. It is worth noting that in this case the contraction may by supplemented

by a shift in ∂t. In this case the constraint does not decouple from the equation of motion

of propagating modes in the base AdSn+2 space. As a result the correlation function will

depend on the fiber coordinates too [55].

4It should be compared with Schrödinger algebra which has infinite dimensional extension in any di-

mension.
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